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ABSTRACT
We test the hypothesis that changes in preceding physio-
logical arousal can be used to predict imminent aggression
proximally before it occurs in youth with autism spectrum
disorder (ASD) who are minimally verbal (MV-ASD).We eval-
uate this hypothesis through statistical analyses performed
on physiological biosensor data wirelessly recorded from
20 MV-ASD youth over 69 independent naturalistic obser-
vations in a hospital inpatient unit. Using ridge-regularized
logistic regression, results demonstrate that, on average, our
models are able to predict the onset of aggression 1 minute
before it occurs using 3minutes of prior data with a 0.71 AUC
for global, and a 0.84 AUC for person-dependent models.
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1 INTRODUCTION
Unpredictable and potentially dangerous aggressive behav-
ior towards others by youth with autism spectrum disorder
(ASD) isolates them from foundational educational, social,
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Table 1: Naturalistic data collection descriptive statistics of participants.

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 Group Mean SD

Number of
Sessions 5 3 3 2 2 2 8 9 2 1 1 1 2 6 1 1 10 1 5 4 69 3.45 2.84

Total Obs.
Duration∗ 9.33 3.97 3.77 3.02 1.25 0.57 7.02 8.47 2.72 1.43 0.22 1.38 1.6 8.47 0.52 1.02 20.48 0.78 5.1 5.87 86.99 4.35 4.80

Number of
Aggression
Episodes

72 7 13 8 9 6 35 30 50 1 2 3 9 39 1 8 130 2 76 47 548 27.40 33.84

Mean Agg.
Duration† 9 102 77 11 19 9 19 18 50 3 1 15 19 6 51 7 103 4 7 22 − 27.6 31.93

∗ Total observation durations are presented in hours. † Mean aggression durations are presented in seconds.

and familial activities, thereby markedly exacerbating mor-
bidity and costs associated with the condition. As many as
2/3 of youth with ASD display aggression [21], which is
one of the primary reasons they use behavioral healthcare
services [4]. Aggression presents imminent safety risks for
the individual and others in the environment. It frequently
co-occurs with agitation, meltdowns, and other problem be-
haviors that are difficult to manage. Families report that
aggression increases their stress, isolation, and financial bur-
den, and decreases available support options [9, 18]. Cross-
sectional [11] and longitudinal studies [14, 42] in ASD sug-
gest that even when broadly-defined problem behaviors de-
cline, they remain heightened in comparison to typically
developing (TD) and intellectually disabled (ID) populations;
and some ASD subgroups engage in persistent or increasing
problem behaviors in adulthood.
Aggression to others is particularly impairing and treat-

ment refractory in the 30 − 40% of youth with ASD who are
minimally verbal (MV-ASD). Their inability to self-report
distress can lead to behaviors that seem to occur without
warning, sometimes long after any observable trigger. This
unpredictability makes aggression in MV-ASD particularly
dangerous and is a barrier to accessing the community, med-
ical providers, and educational placements as caregivers be-
come afraid to put their child with ASD into potentially
stressful environments that might lead to aggression to oth-
ers. This predicament can demoralize caregivers, accelerate
negative patient trajectories, decrease quality of life, and
collectively increase health care costs.
A new approach to understanding and reducing aggres-

sion to others in ASD is needed, particularly for those with
MV-ASD. Aggression is frequently treated with medication,
which can have significant side effects and inconsistent suc-
cess [1, 40, 41]. Another common evidence-based approach is
to attempt to determine the function of aggressive behavior

(escaping from demands, gaining attention, etc.) utilizing
applied behavioral analysis (ABA) [5]. While ABA interven-
tions that target these functions in ASD are common [19],
their effectiveness is often reduced due to insufficient time
to attempt de-escalation strategies before aggression occurs.
Moreover, it has been shown that 30% of functional behavior
assessment studies are inconclusive, and many with ASD
remain aggressive even when the identified trigger is with-
drawn or the apparent function is addressed [10, 20, 37].

Aggression to others may represent a maladaptive attempt
to express or modulate physiological arousal due to distress
[7]. In TD youth, greater ability to regulate physiological
arousal is associated with fewer behavior problems [6, 31].
Studies of disorders characterized by emotional and behav-
ioral dysregulation, such as bipolar disorder and antisocial
behavior, report a strong association between physiological
disturbance and symptomatology [12, 25, 29, 30, 32, 35, 38].
Prior research also demonstrates an association between
physiological arousal and problem behavior in ASD [8, 13],
wherein an individual may engage in a problem behavior in
an attempt to communicate or alleviate distress, and decrease
or increase arousal to achieve autonomic equilibrium [15–
17, 33, 34]. If these behaviors are punished or their function
is not satisfied, physiological arousal can increase, exacerbat-
ing and perpetuating an escalating loop of distress, arousal,
and aggression. Thus, we hypothesize that changes in physi-
ological arousal precede aggressive behavior. Our objective
is to reduce the impact of aggression in MV-ASD by vali-
dating physiological biomarkers that precede the proximal
onset of aggression to others. If successful, this effort could
transform the approach to aggression in ASD by enabling
providers in the future to receive real-time alerts predicting
when aggression is imminent, creating new opportunities
for preventing or mitigating its emergence, occurrence, and
impact.
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2 NATURALISTIC OBSERVATIONS
Participants
Twenty ADOS-2 [26] confirmed, behaviorally unstable, MV-
ASD youth in the Developmental Disorders Unit at Spring
Harbor Hospital in Portland, Maine participated in this study.
The sample on averagewas 10.8 years old (SD= 3.10, range=
6 − 17), 75% male (n = 15), 95% Caucasian (n = 19), and 90%
non-Hispanic (n = 18). Mean nonverbal IQ (NVIQ) of the
sample assessed at hospital admission was 66.1 (SD = 18.99,
range = 31 − 98), with 65% of patients (n = 13) meeting
criteria for intellectual disability (NVIQ ≤ 70). Severity of
behavior in the sample was also assessed at intake using
the caregiver-rated Aberrant Behavior Checklist (ABC [3])
Irritability subscale, and resulted in a mean of 28.11 (SD =
8.55, range = 16 − 42).

Data Acquisition
Data recorded in this Institutional Review Board approved
study included 69 unstructured observational sessions in the
specialized ASD psychiatric inpatient unit. Patients wore an
E4 biosensor on their wrists (Empatica Inc., United States)
while inpatient research staff concurrently coded naturalistic
observations of operationally defined aggression to others
(e.g., hitting, kicking, biting, scratching, grabbing, pulling).
Inter-rater reliability for observed aggression onset and off-
set between two research staff from the inpatient site yielded
0.90 percent agreement and a corresponding Cohen’s Kappa
of 0.79, wherein a maximum tolerance of 2sec onset or offset
difference between raters was considered an agreement (see
aggression duration mean and standard deviation in Table 1,
i.e., average duration of observed aggression in the sam-
ple was 28sec, much longer than a 2sec difference between
raters) in 20% of data randomly selected from our corpus.
Research staff conducted these data collection observations
with minimal interference to participants’ regularly sched-
uled daily routines over the course of their inpatient stay.
During school hours this consisted of academic lessons, free
time, lunch in the cafeteria, and group activities (gym, music,
etc.). On the inpatient unit, this consisted of various group
activities, down time, on the playground, and while eating
dinner. Since our data collection sessions were observational
and naturalistic, researchers did not interact with partici-
pants before, during, or after aggression episodes, they only
provided clinical staff with assistance donning and doffing
the E4.

All 20 MV-ASD youth tolerated the E4 sensor after desen-
sitization and usable data was obtained in all cases. Sixty-
nine independent naturalistic observational sessions were
collected (Table 1), [m(sd) = 3.45(2.84) observational ses-
sions per patient], totaling 87hrs [m(sd) = 4.35hrs(4.8hrs)

per patient]. Out of 548 total aggressions observed with con-
current E4 data, mean and standard deviation of aggression
frequency and duration was 27(34) episodes in a four-hour
period of 28sec(32sec) average length, respectively.
The following autonomic nervous system indices were

recorded by the wrist-worn E4 biosensor to capture mea-
sures of physiological arousal: (1) heart rate and heart rate
variability, which is a measure of the variation in beat-to-
beat interval, both derived from blood volume pulse (BVP )
and inter-beat interval (IBI ) via photoplethysmography [2]
at 64 Hz; and (2) electrodermal activity (EDA) sampled at 4
Hz, which reflects autonomic innervation of sweat glands
and provides a sensitive measure of alterations in physio-
logical arousal. To quantify changes in physical activity, the
E4 records movement acceleration (ACC) using an embedded
3-axis accelerometer at 32 Hz sampling rate.

3 METHODS
Time-Series Feature Extraction
Naturalistic observations yielded labeled time-series data
through 6 signal sources (i.e., BVP , IBI , EDA, ACCx , ACCy ,
ACCz ). Statistical analyses on these physiological and physi-
cal activity signals were performed through extracted time-
series features offline. In bins of 15 seconds, the following
features were calculated: first, last, maximum, minimum,
mean and median value, amount of unique values, and the
sum, standard deviation and variance of values falling in
a bin. In order to exploit temporal information of aggres-
sion episodes, we extracted two more features using time-
synchronized binary aggression labels offline; time since past
aggression (TPA), which indicates the amount of time elapsed
since the last observation of an aggression episode; and a
binary aggression observation flag (AOF ) feature, indicating
whether an aggression episode has so far occurred within
that recording session. The standard deviation of each calcu-
lated feature across predictor time-series bins was included
in all prediction models.

Logistic Regression Classifier Model
The predictability of aggressive behavior onset using ex-
tracted features was investigated through a ridge-regularized
logistic regression for binary decision making in time. In par-
ticular, at every time point t, using features extracted in a
previous time range [t−τp , t), a classifier was used to predict
a binary dependent variable l , estimating whether aggression
will be observed or not in an upcoming time range (t, t + τf ].

We adopted a 5-fold cross-validation protocol to gener-
ate training and testing data splits, and repeated five times
to produce confidence intervals. At each fold, the classifier
was constructed with the training split through maximum
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likelihood estimation for optimal ridge-regularized regres-
sion weights β = [β0, β1, . . . , βd ]

T , where d is the number
of features. To predict, the classifier generates probabilities
for two classes l = +1 (i.e., aggression) and l = −1 (i.e.,
non-aggression) in the form:

P(l = +1|x ; β) = 1
1 + e−βT x

,

where x = [1,x1, . . . ,xd ]T corresponds to the concatenated
feature vector from [t − τp , t). Receiver Operator Character-
istic (ROC) curves and corresponding Area Under the Curve
(AUC) values were calculated depending on the decision
thresholds over these probabilities.
Among all extracted features, five different feature sub-

sets were used as predictor variables (x) in our analyses:
(1) only temporal information (TPA, AOF ); (2) only physi-
cal activity (ACC); (3) only physiological activity (BVP , IBI ,
EDA); (4) physical and physiological activity features com-
bined (BVP , IBI , EDA, ACC); and (5) all extracted features
combined (BVP , IBI , EDA, ACC , TPA, AOF ).

4 RESULTS
Classification analyses for particular values of τp and τf
were performed through both global and person-dependent
models. In the former, time-series data across all sessions
and all participants were concatenated, whereas in the latter
data were pooled across sessions within each person. Data
was processed for decision making every 15 seconds, which
resulted in 20, 863 samples in global prediction models.

Global Prediction Models
Global prediction models of aggression in the upcoming one
minute using all extracted features from the past τp = 180
seconds, which was the highest value the shortest individual
session data permitted, resulted in the blue solid ROC curve
presented in Figure 1 with a corresponding AUC value of
0.71. Figure 2(a) depicts increases in AUC when E4 biosensor
data is included, compared to using temporal information
on aggression episodes alone. Similar analyses for τp = 60
seconds are presented in Figure 2(b).
Regarding the relationship between past time range (τp )

and future time range used to make aggression onset pre-
dictions (τf ), Figure 2(c) depicts stationary performance in
global prediction models using all features from various past
τp durations. However, when using physical and physiologi-
cal biosensor data from the past (c.f. bold dashed red curve),
we observe relative AUC increases compared to temporal
data of past aggression only (c.f. light dotted dark blue curve).
Similar performance dynamics were observed when we in-
creased feature space dimensionality with τp , as illustrated
in Figures 2(a) and 2(b).
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Figure 1: ROC curves with 90% confidence intervals to pre-
dict onset of aggression in the upcoming minute, using all
features from the past three minutes. Blue solid line repre-
sents the globalmodel, and each curvewith dashed lines rep-
resents one of the person-dependent models.

Person-Dependent Prediction Models
We repeat the above analysis with parameters τp = 180
seconds and τf = 60 seconds in person-dependent mod-
els; Table 2 contains the corresponding mean AUCs. Across
participants, we observe an average 0.15 increase in AUC
values up to 0.84 using E4 biosensor data compared to using
temporal aggression information only. Figure 1 shows ROC
curves corresponding to person-dependent model prediction
performance using all features compared to the global predic-
tion model with the same parameters. We observe a higher
mean AUC and a much favored behavior of steep increases
of sensitivity for low false positive rates in person-dependent
models compared to global prediction models.

5 DISCUSSION
We demonstrate, for the first time, that naturalistically ob-
served aggressive behavior in MV-ASD youth in a hospital
inpatient setting can be predicted with high accuracy using
proximal physiological and physical activity biosensor data
and temporal information on recently observed aggressive
episodes. While a growing number of researchers have used
physiological data to discriminate affective states, anxiety,
and challenging behaviors generally in autism [22–24, 27, 39],
all prior work we are aware of in this area relies on artificial
experimental settings and tasks, does not evaluate a sizeable
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Figure 2: Mean AUC values of the global models varying as a function of: (a) τf using features from the past three minutes; (b)
τf using features from the past minute; and (c) τp at τf = 60 seconds. Each color represents one of the five feature subsets for
all figures. Error bars represent minimum and maximum AUC values across cross-validation repetitions.

Table 2:MeanAUCvalues across cross-validation repetitions in person-dependent predictionmodelswith τp = 180
seconds and τf = 60 seconds (i.e., predicting aggression onset for the next minute, using accumulated data from
the past three minutes).

Features P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 Mean SD

Temporal 0.67 0.57 0.58 0.52 0.83 0.58 0.62 0.58 0.83 0.83 0.82 0.61 0.64 0.59 0.92 0.83 0.65 0.99 0.53 0.61 0.69 0.14

Physical 0.66 0.84 0.80 0.49 0.88 0.73 0.65 0.79 0.79 0.98 0.51 0.85 0.79 0.64 0.81 0.73 0.72 0.99 0.60 0.75 0.75 0.13

Physiological 0.64 0.85 0.79 0.68 0.99 0.68 0.66 0.70 0.88 0.97 0.78 0.82 0.79 0.70 0.97 0.70 0.75 0.99 0.69 0.74 0.79 0.12

Physical and
Physiological 0.71 0.86 0.81 0.67 0.98 0.75 0.68 0.76 0.88 0.99 0.83 0.87 0.85 0.71 0.99 0.72 0.78 0.99 0.70 0.78 0.82 0.11

All Features
Combined 0.74 0.87 0.81 0.69 0.98 0.77 0.69 0.77 0.92 0.99 0.86 0.85 0.91 0.73 0.99 0.89 0.80 0.99 0.71 0.78 0.84 0.10

sample of ends users in naturalistic settings, and is correla-
tional, not temporally predictive. Our results demonstrate
proof-of-concept, feasibility, and incipient validity predicting
imminent aggression in this population and setting using
both global and person-dependent models. As communicated
to us by inpatient clinical staff, the potential benefit of avoid-
ing or reducing a dangerous aggressive event is likely to
outweigh the potential harm associated with a false posi-
tive in clinical practice. Predicting aggression onset during
naturalistic observation in the upcoming 1 minute with at
least 80% sensitivity is of high clinical value and could create
new opportunities for preventing or mitigating aggression
emergence, occurrence, and impact in MV-ASD.

We focused on the MV-ASD population because they are
the most treatment-refractory, which compounds their un-
derserved status in research [36]. We also focused on phys-
ical aggression to others because it is the most interfering
and relevant (vs. verbal aggression) for MV-ASD youth. Fi-
nally, we sought to define a more generalized, objective ap-
proach to aggression grounded in underlying physiological
mechanisms rather than trying to differentiate proactive or
reactive aggression as is often done in the literature address-
ing the typically developing population. The advantages of
biologically-based tools for predicting and preventing ag-
gression are numerous, and the potential applications of
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these tools for improving the daily lives of individuals with
MV-ASD are immense.
Our findings lay the groundwork for future work that

defines and enables new opportunities for intervention be-
fore distress escalates to aggression. For example, with rel-
atively modest ongoing technical development, biosensor
data could be transmitted to a mobile phone via Bluetooth
using a real-time data streaming application. The biosen-
sor data and time-synchronized coding of aggression on the
mobile application could be sent to a secure cloud server
via wifi to store data, run classifiers, and push real-time
aggression risk predictions via wifi or Bluetooth to a mo-
bile phone, displaying a risk alert on the mobile application
when indicated. Direct care staff could monitor these alerts
and initiate de-escalation or emotion regulation interven-
tions before aggression occurs. The impact of these alerts on
the effectiveness of de-escalation and/or emotion regulation
interventions could then be tested through a randomized
controlled trial to determine if being alerted to imminent
aggression (including the impact of false positive and false
negative prediction rates) reduces the frequency, intensity,
and duration of such episodes.
The impact of our work could be further extended by as-

sessing whether degree of emotion regulation impairment
is associated with specific arousal patterns, and if so, use
that information to optimize subject selection for future in-
tervention trials. We could also apply our methods to other
problem behaviors in MV-ASD (self-injury, property destruc-
tion, elopement, etc.), including extending it to verbal youth,
youth with other developmental disorders, and other pop-
ulations who exhibit frequent aggression. In addition, this
work could be extended through future treatment trials of
an integrated mobile application and biosensor system with
caregivers and in community settings, placing a validated
biologically-based system for prediction of imminent aggres-
sion in their hands. Finally, with user interface modifications,
this technology has the potential to be used by individuals
with MV-ASD as a tool for self-monitoring and reminder to
attempt self-regulation strategies.
Regarding future work currently underway, we will test

whether hybrid models improve prediction performance,
wherein person-dependent models are iteratively modified
to include the most significant physiological biomarker fea-
tures from global models. We will also explore ways to cre-
ate more robust global prediction models, wherein we will
test whether aggression onsets can be modeled as a non-
homogeneous Poisson process. In that regard, we will evalu-
ate whether regressing hazard rates from past observations
can be performed through maximum likelihood estimation,
comprising an iterative solution of several weighted linear
regressions [28], leading to improved predictive performance
across upcoming time ranges.

In sum, we seek through this work to combine novel
methodologies, cutting-edge technology, unique settings,
and focused multidisciplinary expertise to rigorously engage
a historically intractable problem for an ASD population that
suffers from the greatest morbidity, and who arguably are
the most in need of innovative approaches.
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